
Mobile Application
Programming
Swift Classes

Swift Top-Level Entities
Like C/C++ but unlike Java, Swift allows declarations of
functions, variables, and constants at the top-level,
outside any class declaration

Constants are declared using the let keyword

Variables are declared using the var keyword

Functions are declared using the func keyword with
parameter names interleaved with the name of the
function, causing it to read like a sentence

Swift Objects
Classes, structures, and enums are all object types
with different defaults in usage

Classes are reference types that share the same
object when assignments are made

Structs are always copied on assignment

Single inheritance, but may conform to many protocols

Add functions and protocols to existing objects using
extension keyword. Also used to break up large objects

Swift Classes
Member functions and properties declared using same
syntax as top-level declarations

Function declarations use parameter labels, but the first
label is omitted when declared in a class

Properties declare both getter / setter and a (hidden)
backing variable using var and let keywords

Use private, fileprivate, internal (default), public, and
open for access control

Constructors are declared using init(), but have different
inheritance rules than most languages

Properties
Properties for class
instances are declared
using var or let

Access properties using
self or the name directly
when unambiguous

External access to the
properties is defined using
private, fileprivate, internal
(default), public, or open

import Point
import Vector

class Car {
private var _vin: String = “FAST”
private var _year: Int = 1970
private var _position: Point = Point()
private var _velocity: Vector = Vector()

var velocity: Vector {
get { return _velocity }
set { _velocity = newValue }

}

var vin: String { return _vin }
var year: Int { return _year }

func moveByInterval(interval: Double) {
_position += _velocity * interval

}
}

import Point
import Vector

class Car {
private var _vin: String = “FAST”
private var _year: Int = 1970
private var _position: Point = Point()
private var _velocity: Vector = Vector()

var velocity: Vector {
get { return _velocity }
set { _velocity = newValue }

}

var vin: String { return _vin }
var year: Int { return _year }

func moveByInterval(interval: Double) {
_position += _velocity * interval

}
}

Stored Properties
Properties that are given a
value at declaration or
during initialization are
called stored properties

These have a hidden
backing store allocated for
each instance as well as
get and set methods

Observe property changes
using willSet and didSet

import Point
import Vector

class Car {
private var _vin: String = “FAST”
private var _year: Int = 1970
private var _position: Point = Point()
private var _velocity: Vector = Vector()

var velocity: Vector {
get { return _velocity }
set { _velocity = newValue }

}

var vin: String { return _vin }
var year: Int { return _year }

func moveByInterval(interval: Double) {
_position += _velocity * interval

}
}

Computed Properties
Properties with explicit get
and set methods define
computed properties

If no set method is
provided the property is
read only (get can be
omitted in this case)

These have no backing
store and act like named
methods

import Point
import Vector

class Car {
private var _vin: String = “FAST”
private var _year: Int = 1970
private var _position: Point = Point()
private var _velocity: Vector = Vector()

var velocity: Vector {
get { return _velocity }
set { _velocity = newValue }

}

var vin: String { return _vin }
var year: Int { return _year }

func moveByInterval(interval: Double) {
_position += _velocity * interval

}
}

Methods
Methods are declared
using func like top-level
functions

Parameters should have
labels so the method reads
like a sentence

The first parameter should
have no label. Instead
name the method with the
first part of the sentence

Swift Classes
class Car
{

private var _vin: String
private var _year: Int
private var _position: Point // Imported
private var _velocity: Vector // Imported

init(vin: String, year: Int)
{

_vin = vin
_year = year
_position = Point(x: 0.0, y: 0.0)
_velocity = Vector(x: 0.0, y: 0.0)

}

var vin: String
{

return _vin
}

var year: Int
{

return _year
} ⤿

var position: Point
{

get { return _position }
set { _position = newValue }

}

var velocity: Vector
{

get { return _velocity }
set { _velocity = newValue }

}

func moveWithTime(elapsedTime: Double)
{

_position += _velocity * elapsedTime
}

}

// Usage
var viper: Car = Car(“23958060934985”, 2003)
viper.position = Point(x: 40.76, y: -113.93)
viper.velocity = Vector(x: 100.0, y: 200.0)
viper.moveWithTime(1.2) //Note label omitted

Initializers
Use init keyword to define
a designated initializer

Must ensure all properties
of class have a value

A default initializer is
created if all properties
have a default value

Properties must be set
before calling a super class
designated initializer

// Inheriting Class
class RocketCar: Car
{

private var _fuel: Double
init(fuel: Double)
{

_fuel = fuel
super.init(vin: “FAST”, year: 2020)

}
var fuel: Double {

get { return _fuel }
set { _fuel = newValue }

}
}

// Root Class
class Car
{

init(vin: String, year: Int)
{

_vin = vin
_year = year
_position = Point(x: 0.0, y: 0.0)
_velocity = Vector(x: 0.0, y: 0.0)

}
// Rest of class…

}

Convenience Constructors

Convenience constructors
prevent duplicating code
by calling designated
initializers to fill in some or
all properties

Must call another initializer
at this class level

Not inherited by sub-
classes

class RocketCar: Car
{

private var _fuel: Double
init(fuel: Double)
{

_fuel = fuel
super.init(vin: “FAST”, year: 2020)

}

convenience init()
{

self.init(fuel: 100.0)
}

var fuel: Double {
get { return _fuel }
set { _fuel = newValue }

}
}

Inheritance & 2-Phase Init
Only designated initializers
are inherited by subclasses

They can be overridden
using the override keyword

Because sub-classes call
super-class designated
initializers, there are rules
for property initialization
order (2-Phase Initialization)

See the reading for class

Other Features
Deinitialization using the deinit method

Class extensions using the extension keyword

Protocol support by defining protocols using protocol
then adding them to the inheritance list for the class

Automatic Reference Counting for memory
management, controlled using weak and unowned

Operator overloading and subscripts

Generic object support similar to java

