Mobile Application
Programming

Swift Classes

9

Swift Top-Level Entities N

x | ke C/C++ but unlike Java, Swift allows declarations of
: , and at the top-level,

outside any class declaration
® Constants are declared using the let keyword
= \ariables are declared using the var keyword

= Functions are declared using the func keyword with
parameter names interleaved with the name of the
function, causing it to read like a sentence

Swift Objects

» Classes, structures, and enums are all
with

» (Classes are reference types that share the same
object when assignments are made

® Structs are always copied on assignment
® Single inhertance, but may.conform to many protocols

x Add functions and protocols to existing objects using
extension keyword. Also used to break up large objects

Swift Classes

= Member functions and properties declared using same
syntax as top-level declarations

® Function declarations use parameter labels, but the
when declared in a class

® Properties declare both getter / setter and a (hidden)
packing variable using var and let keywords

= Use private, fileprivate, internal (default), public, and
open for access control

® Constructors are declared using init(), but have different

iInheritance rules than most languages
LSS

Properties

= Properties for class si5est
instances are declared
USINO VL ORla ks

x AcCcess properhes US|ng_;,i;ﬁ*t
self or the name dlrectly f; i
when unamb|guous

x External access to the
properties is defined using
private, fileprivate, internal
(default), public, or open

Stored Properties

= Properties that are g|ven a
value at declaration or
during initialization are =~
called stored propertles |

= [hese have a h|dden
backing store allocated for
each instance as well as
get and set methods

x Observe property changes
using willSet and didSet

Computed Properties

» Properties with explicit get '
and set methods deﬂne
computed propertles

= [f NO Set method s :
provided the property |s
read only (get can be
omitted in this case)

®= [hese have no backing
store and act like namead
methods

Methods

x Methods are declared

using func:like top IeveI i
functions | S

J 29.©

abels so the method reads
ke a sentence

= [he first parameter should
have no label. Instead
name the method with the
first part of the sentence

INitializers

o8,

O)
")JQJ ‘®
/’) D >
S o, >’

J

®

‘/Jf)))
0.0.0
020200
2020002000200
096%6%0%6%0°
DI
o > 02020 JJ 20202 J))J)J
) J) J)
O D)_))_)) D
SCALL- NS, Seo00e: 00500))J)))
)“\)))) J)))))
0.0,
D, 00
°
e
J
J

R
020, 020
Jzen IS)ﬁjJ)J)igJJJ
00000000 0 000
J)))))J)J J))J
)))J))))

),GS

)J)

pe

before Calling a super class
designated initializer

Convenience Constructors

x Convenience constructors

by calling designated

iINnitializers to fill iIn some or

all properties

x Must callzanother initializer

at this class level

= Not inherited by sub-
classes

class RocketCar: Car

private var _fuel: Double
init(fuel: Double)

1
_fuel = fuel

super.init(vin: “FAST”, year: 2020)
;

convenience init()

{
¥

self.init(fuel: 100.0)

var fuel: Double {
get { return _fuel }
set { _fuel = newValue }

}

Inheritance & 2-Phase Init

are inherited by subclasses

= [hey can be overridden
using the override keyword

= Because sub-classes call
super-class designated
initializers, there are rules
for property initialization

order (2-Phase Initialization) | i \ —

I Designated | | Designated - ©
» See the reading for class | -

Other Features

= Deinitialization using the pelsiiglele
® (Class extensions using the extension keyword

x Protocol support by defining protocols using protocol
then adding them to the inheritance list for the class

x Automatic Reference Counting for memory
management, controlled using weak and unowned

x Operator overloading and subscripts

= (Generic object support similar to java

